MICROSURGICAL REPAIR OF THE ADOLESCENT VARICOCELE

GARY E. LEMACK, ROBERT G. UZZO, PETER N. SCHLEGEL AND MARC GOLDSTEIN*

From the James Buchanan Brady Foundation, Department of Urology, New York Hospital–Cornell Medical Center and Population Council, Center for Biomedical Research, Rockefeller University, New York, New York

ABSTRACT

Purpose: Since clinically apparent varicoceles may affect testicular volume and sperm production, early repair has been advocated. However, repair of the pediatric varicocele with conventional nonmagnified techniques may result in persistence of the varicocele after up to 16% of these procedures. Also testicular artery injury and postoperative hydrocele formation can occur after nonmagnified repair. The microsurgical technique has been successfully completed in a large series of adults with a dramatic reduction in complication and recurrence rates. We report our experience with the microsurgical technique in boys.

Materials and Methods: A total of 30 boys (average age 15.9 years) underwent 42 microsurgical varicocelectomies (12 bilateral). All patients had a large left varicocele. Indications for repair included testicular atrophy (size difference between testicles of greater than 2 ml.) in 20 boys, pain in 5 and a large varicocele without pain or testicular atrophy in 5. Six boys were referred following failure of conventional nonmagnoscopic techniques. All boys were examined no sooner than 1 month postoperatively (mean followup 12).

Results: Preoperative volume of the affected testis averaged 13.0 ml., and an average size discrepancy between testicles of 2.8 ml. was noted before unilateral varicocelectomy. No cases of persistent or recurrent varicoceles were detected, and 1 postoperative hydrocele resolved spontaneously. After unilateral varicocelectomy the treated testes grew an average of 50%, while the contralateral testes grew only 23%. Overall, 88% of patients with testicular atrophy demonstrated reversal of testicular growth retardation after unilateral varicocelectomy. In contrast, both testes showed similar growth rates after bilateral varicocelectomy (45% left testis, 39% right testis).

Conclusions: The meticulous dissection necessary to preserve arterial and lymphatic supply, and to ligate all spermatic veins in the pediatric patient is readily accomplished using a microsurgical approach, and results in low recurrence and complication rates. Rapid catch-up growth of the affected testis after microsurgical varicocelectomy suggests that intervention during adolescence is effective and warranted.

Key Words: varicocele, microsurgery, testis

The prevalence of varicoceles in the pediatric population has been estimated to be 6% at age 10 years and 15% by age 13 years, which is similar to the prevalence among men. Clinically apparent varicoceles in children have been shown to retard the growth of the ipsilateral testis. Since testicular volume has been demonstrated to correlate with sperm production, a size discrepancy between the testes associated with a unilateral varicocele suggests a potential risk to future fertility. The current consensus is that boys with testicular atrophy (testicular size discrepancy of greater than 2 ml.), a large varicocele, bilateral varicoceles and, perhaps, an abnormal gonadotropin-releasing hormone stimulation test undergo varicocele repair to prevent subsequent fertility problems.

The conventional treatment for varicoceles in childhood has been high ligation of the internal spermatic veins, via a retroperitoneal (Palomo) approach. This procedure generally involves incision of the external oblique fascia, and cephalad retraction of the internal oblique fascia and muscle to expose the spermatic cord in the retroperitoneum. The internal spermatic veins are then visually identified and ligated. No attempt is made to identify the testicular artery. It has been suggested that the outcome of varicocelectomy in children has not been as favorable as results reported in adults due to technical difficulties in identifying small internal spermatic veins and failure to visualize aberrant external spermatic veins rejoining the internal spermatic vein above the retroperitoneum. Some authors have reported a recurrence rate as high as 16% in children, while in adults a 5% rate has been estimated.

Atassi et al recently reported a 1.3% persistence rate following varicocelectomy by intentionally ligating the testicular artery as well as visible dilated internal spermatic veins. Postoperative hydroceles occur after 3 to 38% of standard surgical varicocelectomy repairs (average 7%), although a breakdown of hydrocele development by age group has not been reported. Additionally, while the incidence of testicular artery injury is unknown, it is likely to be a more frequent phenomenon than realized.

A microsurgical inguinal or subinguinal technique for the treatment of varicoceles has recently been described. This surgical approach has been shown to result in fewer recurrences and postoperative complications than conventional inguinal varicocelectomy in adults. The procedure is safe to perform and, due to the ability to complete meticulous dissection of the spermatic cord elements under 6 to 25× magnification, the internal spermatic artery and lymphatics are almost always preserved. Delivery of the testis and use of magnification allow direct visual access to all possible routes.

Accepted for publication February 6, 1998.

* Requests for reprints: Department of Urology, Box 94, New York Hospital–Cornell Medical Center, 525 East 68th St., New York, New York 10021.
MICROSURGICAL REPAIR OF ADOLESCENT VARICOCELE

A testicular artery (1 mm in diameter) identified under 15× magnification. B, isolated with 1-zero silk suture

of venous return. We describe our application of this approach for the treatment of varicoceles in adolescents.

MATERIALS AND METHODS

Patients. A total of 30 boys 11 to 20 years old (average age 15.9) underwent microsurgical varicocelectomy. All patients had large left varicoceles, and 12 had mild to moderate right varicoceles on further evaluation. Since we believe that these smaller right varicoceles may affect testicular function and most of these patients had already experienced contralateral atrophy, all 12 underwent bilateral repair. The most common indications for repair were size difference between testicles of greater than or equal to 2 cm, with or without pain in 20 boys, pain in 5 and a large varicocele alone without pain or testicular atrophy in 5. Varicocele recurrence followed failed radiographic internal spermatic vein embolization in 2 of 6 patients who were referred to us. All patients were examined in a warm room in the supine and upright positions with and without the aid of a Valsalva maneuver. Preoperative assessment of testicular volume was performed with an orchidometer.

Procedure. All patients underwent bilateral or unilateral microsurgical varicocelectomy with delivery of the testis as previously described. Briefly, a 5 cm incision is made in the skin overlaying the external inguinal ring and Scarpa's fascia by incising the spermatic cord, which is grasped with a Babcock clamp as it exits the external ring, delivered and surrounded with a large Penrose drain. In prepubertal boys the external oblique aponeurosis is opened and T6 cord is dissected near the internal ring. The testis is delivered, and all external spermatic and gubernaculum veins are ligated or clipped and divided. The testis is returned to the scrotum and the spermatic cord is placed over the Penrose drain. Using the operating microscope under 6 to 25× power magnification, the external and internal spermatic fascias are opened. The testicular and cremasteric arteries and lymphatics are identified and preserved (see figure). All spermatic veins are doubly ligated with small hemoclips or 4-zero silk sutures and divided. The vas deferens and its vessels are preserved.

General endotracheal anesthesia was used in all patients, and for all but 1 hospital discharge was the same day. There were 12 patients who underwent bilateral procedures and the remainder underwent left varicocelectomy. Simultaneous contralateral orchiopexy and contralateral hydrocelectomy were done in 1 patient each at the time of varicocelectomy.

RESULTS

Preoperative testicular volume in our patients ranged from 1.5 to 20 ml (total 42 testes treated, average 13 ml). When unilateral varicocelectomy was planned the average size discrepancy between the 2 sides was 2.8 ml. Semen analyses before the planned varicocelectomy in 2 patients 18 and 19 years old demonstrated below average sperm concentrations (average 32.4 million per ml.).

All but 1 of the 30 patients who underwent varicocele repair were seen at followup at least 1 month postoperatively and no recurrences were detected. A single hydrocele at 2 months postoperatively had resolved spontaneously by 11 months after varicocele repair. A second patient experienced scrotal pain postoperatively, which resolved after a short course of doxycycline and ibuprofen.

Longer term followup was available in 13 patients, all of whom still had no evidence of recurrence (median followup 7 months, range 4 to 48). Of these patients 7 had undergone left and 6 bilateral varicocelectomy. All patients had subsequent growth of the affected and treated testis (19 testes) with an average growth of 51% above preoperative size. In comparison, the untreated testes grew an average of 23% in the same time, which was significantly different between groups (p = 0.027, Student's t test). In patients who had undergone unilateral varicocelectomy the average growth of the treated testis was 66% while the contralateral untreated side experienced less growth (23%), which was significantly different between groups (p = 0.01). Among the 6 boys who underwent bilateral varicocelectomy both testes demonstrated similar growth at an average followup of 10 months (45% left testis, 39% right testis), which is not significantly different between sides.

DISCUSSION

The association between a varicocele in the pediatric patient and subsequent subfertility is suggested by several studies. Lyon et al noted that testicular growth retardation occurred in 10% of testes affected by a varicocele in pediatric patients, and that 20% of adult patients had reduced size of the left testis compared to the right in the presence of a left varicocele. Taken together with the inability of the varicocele repair to restore normal fertility for all men after varicocelectomy in adulthood, these results suggest that an insult to prepubertal testicular growth may have a permanent effect on future fertility. Lipshultz and Corriere demonstrated a size reduction in the ipsilateral and contralateral testis in subfertile men with varicoceles, and proposed that surgical correction at an early age could prevent subsequent atrophy. Finally, Sigman and Jarow recently argued for repair of adolescent varicoceles that were associated with growth retardation based on the finding of significantly poorer mean motile sperm counts in men presenting with varicocele associated testicular hypotrophy.

The ability of adolescent varicocele repair to reverse testicular growth retardation in 60% of treated patients combined with our findings support the value of early varicocele repair. In patients whose only indication was a size discrepancy of greater than 2 cm, the testes affected/testicular volume was shown to increase an average of 64%
as opposed to the untreated testis, which grew an average of 26% in the same time. These results suggest that early surgical intervention served to promote testicular growth of the affected side. In 8 of 9 patients size discrepancy of greater than 2 ml between testes preoperatively resolved after surgical repair of the varicocele.

The microsurgical technique for the repair of varicoceles has proved to be an effective and safe method of treatment in adults. Varicoceles in children potentially pose an even more difficult problem because of the reduced size of the internal spermatic veins and lymphatics, and a diminished arterial pulse. The advantages gained by using the operating microscope in the adult could clearly benefit the potentially more challenging repair of the pediatric varicocele. Use of the operating microscope and delivery of the testis allow identification and preservation of the testicular artery and lymphatics as well as direct visual access to all possible routes of venous return.

We have demonstrated that this repair can be performed in a pediatric population on an outpatient basis through a 2 cm. subinguinal incision as safely as in adults. Intentional ligation of the testicular artery has been shown to reduce markedly the incidence of varicocele recurrence in adolescents by ensuring ligation of periaarterial veins that may be missed with a nonmicroscopic approach. Our results indicate that postoperative hydrocele formation and varicocele recurrence can be eliminated without intentional ligation of the testicular artery. Similar results following microsurgical varicocelectomy in 32 boys were recently reported by Minevich et al. Finally, while the effect of sacrificing the testicular artery on subsequent testicular capacity in the adolescent patient remains uncertain, it is untenable that ligation of the artery is likely to enhance testicular function.

CONCLUSIONS

Whether to treat an asymptomatic varicocele during adolescence remains debatable among urologists. While some claim that intervention will not alter the natural history of the disease process, others have found that the continued presence of a varicocele in childhood may adversely influence testicular function and, therefore, prompt intervention is mandated, particularly when a size discrepancy between testes is already apparent at the time of examination. Rapid catch-up growth of the affected testis after microsurgical varicocelectomy suggests that correction during adolescence may indeed enhance testicular function and is warranted. The greatest benefit was seen in patients whose affected testis was more than 2 cm. smaller than the contralateral testis.

Interestingly, the most appropriate method of repair for this age group is even more controversial. While an abundance of literature concerning adult varicoceles has effectively demonstrated the superiority of the microsurgical technique, many still contend that the Palomo approach remains effective in the adolescent population. We have demonstrated that the meticulous dissection necessary to preserve the arterial and lymphatic supply, and to ligate all spermatic veins in the adolescent patient is readily accomplished using a microsurgical technique and that this approach results in extremely low recurrence and complication rates. Further validation of this approach will be attained by following the semen parameters of these boys as they mature.

REFERENCES

EDITORIAL: ADOLESCENT VARICOCELE

Animal and human studies have demonstrated that varicocele is associated with a progressive duration-dependent decline in testicular function.1-7 Repair of varicocele will halt any further damage and in a majority of men will result in improved spermatogenesis. In adolescents8 and adults9 increase in testicular volume has been documented after surgical repair. Correction of adolescent varicocele is appropriate in boys with significant ipsilateral testicular growth failure. A good case can also be made for repair when the varicocele is large, associated with change in testicular consistency (softness) or asymptomatic. In postpubertal adolescents repair is indicated for abnormal semen analyses, low serum testosterone and/or elevation of serum follicle-stimulating hormone levels. Since palpable varicocele is found in at least 15 to 20% of postpubertal male individuals and 23% of these varicoceles are large,10 adolescents who are potential candidates for repair number in the millions worldwide. Although prophylactic varicocelectomy on a large scale sounds like a radical proposal, it is likely that the costs of treating varicocele induced infertility (after the damage has been done) will far exceed those of prophylactic repair when one factors in the costs of infertility evaluation and treatments, such as intrauterine insemination and in vitro fertilization.

The potentially important role of urologists in preventing future infertility underscores the importance of using a varicocelectomy technique that minimizes the risk of complications and recurrence. This raises several questions, including whether varicoceles in children and adolescents are different than in adults, what the ideal operation is for the repair of varicocele and whether the approach to repair should be different in adolescents and adults.

The most important difference between varicocelectomy in adults and adolescents is that in most adolescents it is done for prophylaxis rather than to treat a disease. The only palpable evidence that varicocele is anatomically different in adolescents and children compared to adults is that recurrence rates after surgical repair appear to be higher in children and adolescents.11,12 Logic dictates that children probably have a greater potential for neovascularization than adults, which may be the reason that surgical failure rates are higher in children. This observation may also explain the ability of the adolescent testis to survive intentional ligation of the entire testicular vascular pedicle with low morbidity, documented reversal of growth failure and a low incidence of varicocele recurrence, as reported by Atassi et al (page 482) in this issue of the Journal. These authors advocate this approach because they claim that higher failure rates occur when artery sparing techniques are used. In comparing a mass ligation Palomo technique with an artery sparing technique, reversal of growth failure was equally successful in both groups but recurrence rates were not reported. In the conclusion they state that “In our experience the Palomo procedure achieves a significantly higher surgical success rate when compared to the artery sparing technique.” The reference given to support this statement is the 1960 article by Ivanissevich describing the standard inguinal technique without magnification, which is not an example of an artery sparing procedure.13

This leads to the question of the ideal technique for repair of varicocele. The following criteria are obvious: preservation of optimal testicular function, prevention of varicocele, minimal current and future morbidity, and cost-effectiveness. Testicular volume measurement is the primary method of assessing testicular function in children and peri-pubertal adolescents. In adults, it is known that atrophy is a relatively crude end point for seminiferous tubular injury. Impaired sperm production and maturation arrest are frequently associated with normal testicular volume. Those surgeons who ligate the testicular arteries and say that it does no harm because there is no atrophy are doing a procedure with unknown effects on future spermatogenesis. This procedure is probably feasible most of the time because repair of unilateral varicocele will benefit spermatogenesis on the contralateral side, most adolescent varicocele repair is done unilaterally and children probably have a greater capacity for neovascularization than adults. At least it is inarguable that testicular artery ligation will not enhance testicular function.

In animals14,15 and human adults16,17 testicular artery ligation is associated with substantial morbidity. The incidence of testicular atrophy after the Ivanissevich approach without magnification is approximately 2 per 1,000. Azoospermia or severe oligospermia after nonartery sparing bilateral varicocelectomy has been reported18 but the true incidence is unknown. I have seen 4 men with this complication, all of whom underwent nonmagnified procedures. However, intentional ligation of the testicular artery is associated with lower rates of varicocele recurrence, which strongly suggests that persistence of the periarterial venous network (vene comitantes) is the most common cause of varicocele recurrence. Previous studies of varicocele microanatomy support this notion.19 Furthermore, microsurgical varicocelectomy techniques that preserve the testicular artery by meticulous microdissection of the periarterial venous plexus19 or injection of sclerosant agents20 were associated with recurrence rates of 0.6% in 640 operations and 0.8% in 606 operations, respectively. All reported series of adolescent varicocelectomy, including that reported by Atassi et al, are small and, therefore, lack sufficient statistical power for comparison to the large adult series. I have performed microsurgical inguinal varicocelectomy in 16 boys without recurrence or hydrocele. Hydrocele is the most common complication of microscopic varicocelectomy and is clearly an unpleasant sequela, necessitating surgical repair about half the time and with an average incidence of 7%,21 which is almost identical to the 2.6% cases (6%) reported by Atassi et al. Hydrocele is due to lymphatic obstruction and preservation of lymphatics will virtually eliminate this complication.19,20

Should the approach to varicocelectomy be different in adults and adolescents or children? Why are pediatric urologists now embracing a technique that has been largely abandoned by male infertility specialists in favor of low inguinal operations using operating microscopes?22 The answer to the first question is no. The goals of varicocelectomy and basic anatomy are identical in both groups. The answer to the second question is training and experience. The dramatic superiority of microsurgical techniques for vasovasostomy and vasoepididymostomy has made such training mandatory for the male infertility specialist. A subinguinal microsurgical operation can be done through a 2 to 3 cm incision without cutting or splitting any muscle or fascia in adults or adolescents. The Palomo operation requires a larger incision through 3 muscle layers and, because the cord structures cannot be externalized, preservation of the artery is almost impossible without also preserving the periarterial venous plexus, resulting in a high incidence of varicocele recurrence. To prevent recurrence the artery must be picked absolutely clean (see figure) or ligated. It is somewhat puzzling that pediatric urologists, who are great champions of loupé magnification, are reluctant to use the microscope which, with only a little practice, is more comfortable, flexi-
ble, and capable of providing variable and higher magnification than loupes. The testicular artery in adults varies from 0.3 to 1.0 mm in diameter and it is even smaller in children. Loupe magnification is inadequate for its meticulous dissection. Laparoscopic varicocelectomy can provide similar advantages of high power magnification with artery and lymphatic preservation, and apparently low recurrence rates.25 Laparoscopy may also be more familiar to pediatric urologists because of their experience with laparoscopic orchiopexy. Laparoscopy is associated with greater potential serious morbidity than the Palomo or low inguinal microsurgical techniques. Laparoscopy also tends longer and is less cost-effective than microsurgical low inguinal or Palomo techniques, which can be performed in 20 to 60 minutes. Radiographic occlusion techniques preserve the artery and lymphatics but have higher failure rates than surgical techniques.

An important consideration regarding varicocelectomy techniques is future vasectomy. After mass ligation of the testicular vascular pedicle, the testis depends on the deferential vessels for its blood supply. Vasectomy in men who underwent mass ligation varicocelectomy is likely to result in testicular atrophy. These men and the parents of adolescents undergoing this type of varicocelectomy must be told that they should not undergo vasectomy. Since 11.7% of couples rely on vasectomy for contraception and a half million men undergo vasectomy annually in the United States,24 this is not a trifling practical or medicolegal consideration.

Whether adolescent varicocelectomy? Preservation of testicular function has traditionally been a major concern of pediatric urologists. Orchiopexy is preventive medicine for infertility,26 as is varicocelectomy. Techniques tested in large numbers of adults can be used in adolescents and children. At least, such techniques do not deserve to be ignored. Clearly, mass ligation of the testicular vascular pedicle can be feasible in children. Does this mean that it is the ideal technique? I think not.

Marc Goldstein
Department of Urology
The New York Hospital-Cornell Medical Center
New York, New York

REFERENCES
Managing varicoceles in children: results with microsurgical varicocelectomy

JONATHAN SCHIFF, CATHY KELLY, MARC GOLDSTEIN, PETER SCHELGEL and DIX POPPAS*

Institute for Paediatric Urology, Children's Hospital of New York, Center for Male Reproductive Medicine and Microsurgery, Cornell Institute for Reproductive Medicine and *James Buchanan Brady Foundation, Department of Urology, Weill Medical College of Cornell University, The New York Presbyterian Hospital, New York, USA

Accepted for publication 13 September 2004

OBJECTIVE

To report our experience of microsurgical subinguinal varicocelectomy in boys aged ≤18 years.

PATIENTS AND METHODS

Boys aged ≤18 years treated with microsurgical varicocelectomy between 1996 and 2000 at one institution were retrospectively reviewed. Indications for surgery included ipsilateral testicular atrophy, large varicocele or pain. Microsurgery was assisted by an operating microscope (x10–25) allowing preservation of the lymphatics, and the testicular and cremasteric arteries. Patient age, varicocele grade, complications and follow-up interval were recorded.

RESULTS

In all there were 97 microsurgical subinguinal varicocelectomies (23 bilateral) in 74 boys (mean age 14.7 years). Left-sided varicoceles were significantly larger (mean grade 2.9) than right-sided (mean grade 1.4) varicoceles. The mean follow-up was 9.6 months. There were four complications: two hydroceles, of which one resolved spontaneously after 4 months; one patient had persistent orchialgia that resolved after 8 months; and one developed hypertrophic scarring at the inguinal incision site. There were no infections, haematomas or intraoperative injuries to the vas deferens or testicular arteries. All boys were discharged home on the day of surgery.

CONCLUSIONS

Microsurgical subinguinal varicocelectomy in boys is a safe, minimally invasive and effective means of treating varicoceles. Compared with published results of the retroperitoneal mass ligation technique, which has a 15% overall complication rate and a 7–9% hydrocele occurrence rate, the microsurgical subinguinal approach appears to offer less morbidity, with a 1% hydrocele rate. We consider that microsurgical subinguinal varicocelectomy offers the best results with lower morbidity than other techniques.

KEYWORD

varicocele, paediatric, microsurgery, outcomes

INTRODUCTION

Managing varicoceles in boys remains controversial; of adolescents with varicoceles,
95% have at least a left-sided varicocele and 22% are bilateral [1]. Varicoceles are relatively uncommon in prepubertal boys and increase in incidence from the age of 10–15 years, up to 13.7–16.2% [2]. Previously, most varicoceles in boys were not treated, because the detrimental effects on future fertility and testicular function were not recognized [3–6]. Several studies then reported that early correction of varicoceles could prevent the decline in fertility found among men with varicoceles discovered in adolescence [3,5,7,8]. Absolute indications for varicocelectomy in children include: testicular size discrepancy of >2 mL on ultrasonography, a >2 SD decrease in testicular size compared with normal growth curves, and varicocele-related pain (orchialgia) [9,10]. However, operating on even large or bilateral varicoceles in adolescents with normal-sized testes remains controversial.

Once the decision has been made to correct an adolescent varicocele the method to be used becomes an important consideration. The best repair technique to correct paediatric or adolescent varicocele is still debated. Recurrence rates are higher in adolescents after repair, at 9–16% [11]. These high failure rates are a result of the technical difficulties in ligating the very small peri-arterial veins or unrecognized communicating internal spermatic veins, cremasteric, deferential, gubernacular, suprapubic and retropubic crossover veins [9,11,12]. Various surgical approaches exist for this procedure, including retroperitoneal, high inguinal, subinguinal, laparoscopic, and percutaneous venous sclerotherapy. The aim of any repair is an effective, durable cure with a minimum risk of complications. The most frequent complications associated with varicocele repair include hydroceles, testicular atrophy and recurrence.

We report our experience using the microsurgical subinguinal varicocelectomy (MSV) in 74 boys; we consider that the enhanced visualization provided by the operating microscope allows a more thorough dissection of the small testicular vessels and lymphatics, resulting in a durable cure with a minimum risk of complications.

PATIENTS AND METHODS

All boys aged ≤18 years treated with MSV at the New York-Presbyterian Hospital Weill-Cornell Medical Center between 1996 and 2000 were included in this analysis; in all, 74 boys were identified, all diagnosed with a varicocele by physical examination. Boys with impalpable varicoceles were excluded from the analysis. Surgical indications included the presence of a clinically palpable varicocele and testicular asymmetry in the absence of other clinical symptoms, or palpable varicocele with ipsilateral orchialgia with no other identifiable causes.

The MSV technique used in this series was well described previously [13,14]. Briefly, patients were placed supine and under general anaesthesia. The external inguinal ring is palpated and marked. A 2.5–3 cm incision is made in the skin above the external inguinal ring (Fig. 1a). Dissection is carried down until the spermatic cord is identified and mobilized (Fig. 1b). We deliver the testicle and examine the gubernaculum to identify any varicose veins between the gubernaculum and the testis. Any large veins are clipped and divided (Fig. 1c). The testis is returned to the scrotum and the cord layers are clipped and divided (Fig. 1c). The testis is returned to the scrotum and the cord layers are clipped and divided (Fig. 1c). The testis is returned to the scrotum and the cord layers are clipped and divided (Fig. 1c). The testis is returned to the scrotum and the cord layers are clipped and divided (Fig. 1c). The testis is returned to the scrotum and the cord layers are clipped and divided (Fig. 1c). The testis is returned to the scrotum and the cord layers are clipped and divided (Fig. 1c).

The testicular artery is identified and tagged with a vessel lobe. Next, all testicular veins are identified and either clipped and divided, or doubly ligated with 4/0 silk sutures and divided. Lymphatic vessels identified during dissection are left in situ. The vas deferens and its vessels are preserved. Vasal veins of >2.5 mm in diameter are also ligated. Once all internal and external spermatic veins are identified and ligated, we test the adequacy of dissection by applying pressure to the testis and palpating an impulse in the ligated veins. Haemostasis is obtained and the testicle delivered again to check for haemostasis. The wound is closed by re-approximating Scarpa’s fascial layer, the subcutaneous layer, and finally a running subcuticular layer. Local anaesthetic is injected into the skin. Patients are discharged home the same day with a scrotal support, ice-pack and fluid dressing, and told to avoid strenuous physical activity for a month.

We retrospectively examined data, including patient age, varicocele clinical grade, uni- or bilateral varicocele occurrence, follow-up interval and complications.

RESULTS

In all, the 74 boys (mean age 14.7 years) underwent 97 MSVs; 23 boys had bilateral palpable varicoceles and 51 had unilateral varicoceles, with a median clinical grade of 3 on the left and 1 on the right. The mean operative duration was 65 min for unilateral and 112 min for bilateral MSVs. At least one testicular artery was identified and preserved in all cases. There were no injuries to the vas deferens and all patients were discharged home on the day of surgery. The mean follow-up was 10.1 months, during which there were four (5%) complications: two boys (2%) developed hydroceles, one of which resolved spontaneously after
4 months; one boy (1%) reported orchialgia that resolved after 8 months; and one boy reported hypertrophic scarring. The indication for varicocelectomy in the boy with orchialgia was pain. There was no orchitis, infection or haematoma, no recurrent varicoceles during the follow-up, and no patient had progressive testicular atrophy or hypotrophy. No patient complained of prolonged orchialgia.

DISCUSSION

The treatment of adolescent varicoceles in cases of testicular atrophy and orchialgia is firmly established [3,5,7,8]; what is less clear is the best way to correct varicoceles in children. There are several surgical approaches to repair varicoceles and percutaneous sclerotherapy is still used. When comparing repair techniques, the best approach is that providing the highest success rate with the lowest rate of complications and morbidity.

Results of the surgical techniques of varicocele repair vary widely. Percutaneous sclerotherapy has a low risk of testicular atrophy but has reported recurrence rates of 9–26% for the retrograde and 2.9–7.1% for the antegrade approach, and a rate of hydrocele formation approaching 14% [15,17]. Inguinal varicocelectomy without microsurgical aid has a reported recurrence rate of 15–16%, with a 10% postoperative hydrocele formation rate, secondary to inadvertent ligation of testicular lymphatics [11,15]. Retroperitoneal ligation of varicose veins with preservation of the testicular artery (the modified Palomo procedure) has a reported recurrence rate of 2.5–13.6%, with at least a 10% risk of postoperative hydrocele formation [15,18]. Laparoscopy has been used for various surgical approaches in urology, and the repair of the adolescent varicocele is no exception. The main advantage of laparoscopy is that it is minimally invasive, as well as using superior optics and magnification of the laparoscopic camera. However, the recurrence rate with this procedure with preservation of the testicular artery has been reported to be 2.2–25%, with a 12.5% risk of postoperative hydrocele formation [11,19,20].

Previous reports of MSV in boys found no recurrence, no persistent postoperative hydrocoles and no cases of testicular atrophy [21,22]. In the present series of 74 consecutive boys treated by MSV, most had large unilateral varicoceles, and there were no recurrences on follow-up. The immediate complication rate was 5% (four of 97), with two hydroceles after surgery, one of which resolved spontaneously after 4 months, giving a 1% risk of hydrocele formation. There were no cases of ischaemic orchialgia or testicular atrophy among the present patients.

We think that using the operating microscope enables a better dissection around the testicular artery and allows for better preservation of the testicular lymphatics, thus decreasing the risk of injury and postoperative hydrocele formation. This procedure causes minimal postoperative morbidity, with incision sizes comparable to those used to place laparoscopic trocars. The high success rate and the low risk of morbidity and complications make MSV the procedure of choice to repair varicoceles in adolescent boys.

CONFLICT OF INTEREST

None declared.

REFERENCES

© 2005 BJU INTERNATIONAL

Correspondence: Dix Poppas, The Paediatric Urology Center, 525 East 68th St., Box 94 Room F-931, New York, NY 10021, USA. e-mail: dpoppas@med.cornell.edu

Abbreviations: MSV, microsurgical subinguinal varicocelectomy.